A Decoupling Derivative-based Approach for Hammerstein System Identification

نویسندگان

  • G. Fedele
  • L. Coluccio
چکیده

This paper proposes a non iterative algorithm for the identification of Hammerstein model, using the sampled output data obtained from the step response, giving a continuoustime model for the linear part and a point-wise estimation of the nonlinear one. Key in the derivation of the results is the algebraic derivative method in the frequency domain yielding exact formula in terms of multiple integrals of the output signal, when placed in the time domain. By investigating the connection between such integrals and parameters to be estimated, a set of three linear regression equations is proposed. The first equation is used to estimate the structure of poles in the linear part, the second to estimate a point of the nonlinearity, the third to estimate the structure of zeros in the linear part. No a priori knowledge of the structure of the nonlinearity is required. The proposed algorithm is numerically robust, since it is based only on least squares estimation. Simulation results validate the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

A blind approach to Hammerstein model identification

This paper discusses the Hammerstein model identification using a blind approach. By fast sampling at the output, it is shown that identification of the linear part can be achieved based only on the output measurements that makes the Hammerstein model identification possible without knowing the structure of the nonlinearity and the internal variables.

متن کامل

B-Spline Neural Networks Based PID Controller for Hammerstein Systems

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on ...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008